Quantized circular photogalvanic effect in Weyl semimetals

نویسندگان

  • Fernando de Juan
  • Adolfo G Grushin
  • Takahiro Morimoto
  • Joel E Moore
چکیده

The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi2) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing topology by “heating”: Quantized circular dichroism in ultracold atoms

We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system's chiral nature, the depletion rate is shown to depend on the ori...

متن کامل

Weyl fermions and the anomalous Hall effect in metallic ferromagnets

We reconsider the problem of the anomalous Hall effect in ferromagnetic SrRuO3, incorporating insights from the recently developed theory of Weyl semimetals. We demonstrate that SrRuO3 possesses a large number of Weyl nodes, separated in momentum space, in its bandstructure. While the nodes normally do not coincide with the Fermi energy, unless the material is doped, we show that even the nodes...

متن کامل

Electromagnetic response of Weyl semimetals.

It has been suggested recently, based on subtle field-theoretical considerations, that the electromagnetic response of Weyl semimetals and the closely related Weyl insulators can be characterized by an axion term θE·B with space and time dependent axion angle θ(r,t). Here we construct a minimal lattice model of the Weyl medium and study its electromagnetic response by a combination of analytica...

متن کامل

Klein tunneling in Weyl semimetals under the influence of magnetic field

Klein tunneling refers to the absence of normal backscattering of electrons even under the case of high potential barriers. At the barrier interface, the perfect matching of electron and hole wavefunctions enables a unit transmission probability for normally incident electrons. It is theoretically and experimentally well understood in two-dimensional relativistic materials such as graphene. Her...

متن کامل

Nonlocal Coulomb drag in Weyl semimetals

Nonlocality is one of the most striking signatures of the topological nature of Weyl semimetals. We propose to probe the nonlocality in these materials via a measurement of a magnetic-field-dependent Coulomb drag between two sheets of graphene which are separated by a three-dimensional slab of Weyl semimetal. We predict a mechanism of Coulomb drag, based on cyclotron orbits that are split betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017